M447 - Mathematical Models/Applications 1 - Homework 4
 Enrique Areyan
 October 2, 2014

Chapter 3, Section 3.3

(8) Amy is studying the feeding habits of a certain bird. She observes that the bird always comes the first day she makes food available. After that, however, whenever food is available the pattern of feeding is as follows:

* If the bird feeds one day, then it never feeds the next day.
* If the bird feeds on day $n-1$ and does not feed on day n, then it feeds on day $n+1$ with probability .75 and does not feed on day $n+1$ with probability .25 .
* If the bird feeds neither on day $n-1$ nor on day n, then it feeds on day $n+1$ with probability .85 and does not feed on day $n+1$ with probability . 15 .
(a) Formulate a Markov chain model for this situation.
(b) In the long run, on what fraction of the days does the bird feed?

Solution:

(a) To model this situation, let us consider a Markov Chain whose states are pairs ($M, M-1$), where M represents the feeding behavior on day M and $M-1$ represents the reading behavior the day before M. These states are sufficient to build a Markov Chain because the behavior of the bird on day $M+1$ depends only on days M and $M-1$. Let F represent a day when the bird feed and N a day in which it did not feed. Then, there are 3 states for the Markov chain, i.e., $F N, N F, N N$ (the state $F F$ is never used), and the transition matrix \mathbf{P} is given by:

$$
\mathbf{P}=\begin{array}{c||ccc||}
& \text { FN } & \text { NF } & \text { NN } \\
\text { FN } & 0 & 1 & 0 \\
\text { NF } & .75 & 0 & .25 \\
\text { NN } & .85 & 0 & .15
\end{array}
$$

(b) To find the long run fraction of the days that the bird feed, let us solve the following linear system, where $\pi=\left[\begin{array}{lll}\pi_{0} & \pi_{1} & p_{2}\end{array}\right]$: (note that this is a regular chain)

$$
\begin{aligned}
& \quad \pi P=\pi, \text { and } \sum_{i=0}^{2} \pi_{i}=1, \text { from which we get the equations: } \\
& 0 \pi_{0}+0.75 \pi_{1}+0.85 \pi_{2}=\pi_{0} \\
& \pi_{0}=\pi_{1} \\
& 0 \pi_{0}+.25 \pi_{1}+.15 \pi_{2}=\pi_{2}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \pi_{0}=\pi_{1} \\
& .25 \pi_{1}=.85 \pi_{2}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \pi_{1}=\frac{.85}{.25} \pi_{2}=\frac{17}{5} \pi_{2}
\end{aligned}
$$

Therefore, we have that $\pi_{0}=\pi_{1}=\frac{17}{5} \pi_{2}$. Substituting into the equation $\sum_{i=0}^{2} \pi_{i}=1$ we get:

$$
\sum_{i=0}^{2} \pi_{i}=1 \Longrightarrow \frac{17}{5} \pi_{2}+\frac{17}{5} \pi_{2}+\pi_{2}=1 \Longrightarrow\left(2 \cdot \frac{17}{5}+1\right) \pi_{2}=1 \Longrightarrow \pi_{2}=\frac{5}{39}
$$

This means that $\pi_{0}=\pi_{1}=\frac{17}{5} \cdot \frac{5}{39}=\frac{17}{39}$. So the fraction of time in each state is

$$
\pi=\left[\begin{array}{lll}
\pi_{0} & \pi_{1} & p_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{17}{39} & \frac{17}{39} & \frac{5}{39}
\end{array}\right]
$$

Finally, according to our notation we have that $\pi_{0}=F N, \pi_{1}=N F$, and $\pi_{2}=N N$. Hence, in the long run, the fraction of the days that the bird feed is:

$$
F N=\pi_{0}=\frac{17}{39}
$$

So the birds feeds approximately 43.59% of the time.

